Approach to Acute Stroke in the Emergency Department

Dr Julia Hopyan

Objectives

- Types of stroke
- Differentiating hemorrhagic and ischemic strokes:
 - Clinically and radiologically
- Stroke syndromes
 - Anterior circulation:
 - Middle cerebral artery
 - Anterior cerebral artery
 - Posterior circulation:
 - Posterior cerebral artery
 - Basilar artery
- Case examples

Differentiation Between Ischemic versus Hemorrhagic Strokes

Hemorrhagic Stroke

Hemorrhage/blood leaks into brain tissue

Ischemic Stroke

Clot stops blood supply to an area of the brain

Clinical Clues for Detecting Hemorrhagic Stroke

Historical

- Headache
- Sudden onset but gradually worsening
- Nausea and vomiting

Examination Findings

- Decreased level of consciousness
- Hypertension
- Bradycardia
- Seizures
- Meningism
- Fever

Patients with hemorrhagic stroke present with similar focal neurologic deficits but tend to be more ill than patients with ischemic stroke

Other Clinical Clues

Causes:

- Uncontrolled hypertension
- Anticoagulants
- Coagulopathies
 - Known bleeding diathesis
 - Advanced liver disease
- Elderly with poor cognition (cerebral amyloid angiopathy)
- Known vascular malformations or aneurysms
- Brain tumours

Urgent Non-contrast CT scan of the Brain

- Blood looks bright white
 - Don't confuse this with cerebral calcification
- Parenchymal versus subarachnoid
- Location
 - Deep versus lobar
- Volume
- Ventricular extension
- Hydrocephalus

Location of Bleeds

Deep 50%

Lobar 35%

• Cerebellum 10%

Brainstem 5%

66yo M with uncontrolled HT

Large deep ICH affecting left basal ganglia

Blood in the left lateral ventricle

87 yo F with dementia

Lobar L occipital ICH

Prognostic Factors in ICH

- Up to 50% mortality rates at 1 year
- Volume of hemorrhage predicts 30 day mortality
 - Poor functional outcomes >30ml ICH
 - >70ml ICH is usually fatal
 - Pontine hemorrhage, >5ml is usually fatal
 - Cerebellar hemorrhage, >30ml is usually fatal

Prognostic Factors in ICH

Hematoma Expansion

- 40% of hematomas expand by >1/3rd of their volume
- More than 2/3rd of hematomas grow in the first hour
- Hematoma expansion correlates with poor functional outcome

CT Angiography

- Vascular anomalies
- "Spot sign"

Ischemic Stroke

- Common
 - Every 45 secs, someone has a stroke
- Devastating
 - For every 10 stroke patients:
 - 2 will die
 - 2 will recover
 - 6 will be left with disability
- Potentially treatable (thrombolysis)

The Ischemic Penumbra

The Ischemic Penumbra: A Dynamic [time + space] concept

Historical Clues

- Cardiovascular risk factors:
 - Smoker
 - HT
 - Hypercholesterolemia
 - Diabetes
 - Family history
- Prothrombotic disorder
- AF
- Cardiomyopathy
- Valvular heart disease

Physical Examination

 Stroke syndrome pertaining to one vascular territory

Bottom line:

- You can't differentiate between ischemic and hemorrhagic stroke purely on history and physical examination
- Imaging is required!

Radiological Features of Ischemic Stroke

 Infarcts look hypodense (dark) on CT

Radiological Features of Ischemic Stroke

 Hemorrhagic transformation

Hyperdense Vessel Sign

Ischemic Stroke Syndromes: Middle Cerebral Artery Occlusion

MCA

Frontal and parietal and temporal lobes (spares paramedian area)

Homunculus

Middle Cerebral Artery

- Contralateral hemiparesis (face, arm>leg)
- Contralateral hemisensory impairment
- Contralateral homonymous hemianopia

- Specific hemispheric signs:
 - Left (dominant hemisphere)
 - Aphasia (expressive, receptive, global)
 - Right
 - Dysarthria
 - Neglect

Large MCA territory infarct with hemorrhagic transformation

The MCA supplies the frontal, temporal and parietal lobes

Ischemic Stroke Syndromes: Anterior Cerebral Artery Occlusion

ACA

Caudate and anterior limb of internal capsule

Corpus callosum

Paramedian frontal and parietal lobes

Anterior Cerebral Artery

- Contralateral weakness of leg >> arm
- Contralateral hemisensory impairment in the same distribution
- Mood and cognition disturbance:
 - Depression
 - Agitated confusion
 - Emotional lability

Hypodense area L paramedian frontal lobe

Ischemic Stroke Syndromes Basilar Artery Occlusion

Basilar Artery Anatomy

Basilar artery supplies the cerebellum, brainstem, the occipital lobes, medial temporal lobes, and thalami

Symptoms associated with Posterior Circulation Strokes

- Slurred speech
- Trouble swallowing
- Double vision
- Vertigo
- Contralateral weakness
- Crossed sensory signs
- Cranial nerve palsies
- Ipsilateral incoordination
- Unsteady gait
- Fluctuating level of consciousness
- Hearing loss

Initial Non-contrast CT Brain often looks Normal

Right pontine stroke on MRI

Ischemic Stroke Syndromes Posterior Cerebral Artery

PCA

Ischemic Stroke Syndromes Posterior Cerebral Artery

- Contralateral hemianopia
- Confusion and memory disturbance

- 76 yo R handed M
- Sudden onset of
 - Difficulty speaking (nonfluent, unable to read or name)
 - Right weakness (arm>leg)
 - Right sensory impairment
- 90 mins duration
- No headache
- History of CAD / HT / chol
- On aspirin

- Does this presentation conform to a particular stroke syndrome?
- Which hemisphere is affected?

Diagnosis?

OCT 24, 1997 512

Follow-up CT's

- 79 yo R handed F
- Background: Uncontrolled HT (noncompliant)
- Sudden onset of headache, nausea and vomiting
- Now drowsy with right hemiplegia
- BP 230/105mmHg

- What do you think the CT will show?
- Where will the lesion be based on clues from the history?

- 80 year old woman
- 1 hour history
 - Acute hemiplegia
 - Gaze deviation
 - Hemispatial neglect
- A fib

Mean transit time prolonged (red)

Cerebral blood flow reduced (blue)

Mismatched defect in the right MCA territory

Cerebral blood volume normal

- 67 yo R handed female
- Sudden onset 3 hours ago
 - L hemiparesis
 - L hemisensory impairment
 - Dysarthria
- Alert + BP 190/85
- Background of HT / chol

Right internal carotid artery occlusion

- 82 yo RH man
- Background of HT and diabetes
- 2 hour history of
 - Non-fluent speech
 - Word-finding difficulty
 - R hemiparesis

- Which blood vessel is involved?
- Which hemisphere?
- Management?

Subtle loss of grey-white differentiation in L frontal region

CT Angiogram

of L MCA

Reduced collateral branches In L MCA territory

Matched defect in the left MCA territory

Reduced cerebral blood volume (blue)

- 76 yo F
- Found collapsed
- Unresponsive
- Spastic quadriplegia
- No verbal output
- No gag reflex
- No facial movement
- Able to respond by blinking or with vertical eye movements

Non-Contrast CT Brain Scan

Pontine infarct

Occluded basilar artery

2 vertebral arteries join to become the basilar artery